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ABSTRACT
Let H be the domain in C? defined by

H={z = (21,23): llzfhy = |21| + |22| < 1}

Let Cy(z, w) be the Carathéodory distance of H, z,w € H. The Carathéo-
dory ball Bo(zc, a; H) with center 2¢, zc € H, and radius o, 0 < a < 1,
is defined by Be(z¢,a; H) = {z: Cg(z,2¢c) < arc tanha}. The norm ball
Byn(zn,r) with center zn, zy € H, and radius r, 0 < r < 1 — |lzn]l1, is
defined by By (zn,r) = {z: ||z — zn|1 < r}.

THEOREM: The only Carathéodory balls of H which are also norm balls
are those with their center at the origin.

1. Introduction

We start this introduction with the definition of the Carathéodory distance for
bounded domains in C® and define Carathéodory balls. For any given norm in
C" we define the norm balls. We quote three theorems related to these notions.
We close the introduction with three examples of unit balls for which it is known
which Carathéodory balls are also norm balls. In Section 2 we state four lemmas.
The first three are not new, and the last lemma is purely geometric. We use these
lemmas in the last section to prove the following result. Let H C C? be the unit
ball with respect to the Iy norm. The only Carathéodory balls of H which are

also norm balls are those with their center at the origin.
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We denote the Poincaré (non-Euclidean) distance of the unit disc
A={z]z| <1}
of C? by p(z,w):
(1.1) (z,w) =arctanh || ==,  |2| <1, |w|<1
. p(z,w) = arc T ool z , Jw .

Let D be a bounded domain in the n-dimensional complex space C™ and let
Hol(D, A) be the set of all holomorphic functions f(z) = f(z1,...,2,) from D
into A. The Carathéodory distance Cp(z,w) of D, z,w € D, is defined by

(12) CD(Z,W) = supp(f(Z), f(w))a

where the supremum is taken over Hol(D, A). The Schwarz-Pick theorem implies
that

(1.3) Ca(z,w) = p(z,w).

The Carathéodory distance is thus a generalization of the Poincaré distance of
the unit disc to general multidimensional domains. For a given bounded domain
D,DcC" and any 2. € D, and any «, 0 < a < 1, we set

(1.4) B¢ = B¢(z,a; D) = {z: Cp(z,z.) < arc tanh a},

and call B¢ the Carathéodory ball in D with center z. and radius a.
We shall use, implicitly, the following fact, cf. [D, p.88].

THEOREM 1.1: Let D be a convex bounded domain in C*. Then for any
Carathéodory ball B¢ = B¢(z.,a; D), 2. € D, 0 < a < 1, its closure B¢ C D.

Next, we quote a special case of a result of Vesentini [V, Lemma 3.5; D, Propo-
sition 6.20).

THEOREM 1.2: Let || - || be a given vector norm in C" and let B be the corre-
sponding unit ball

(1.5) B = {z: ||z]| < 1}.
Then, for any z € B and any a € C? such that az € B,

(1.6) Cp(z, az) = p(||zl, allz]))-
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Let || - || be a given norm in C™. For any zy € C" and any positive r we set
(1.7) By = Bn(zn,r) = {z: ||z - zn]|| < r},

and call By the norm ball with center zy and radius r. By (1.5) B =
Bn(0,1) where O is the origin of C".

THEOREM 1.3: Let || - || be a given norm in C™ and let B be the corresponding
unit ball. Then, for any a, 0 < a < 1,
(1.8) B¢(0,a; B) = BN(O, ).

This follows from (1.6) with @ = 0, and (1.1). For a direct proof see [FV,
Theorem 1V.1.8].

In the one-dimensional case every norm disc is an ordinary (Euclidean) disc
and in this case every non-Euclidean (Poincaré) disc of A is a Euclidean disc (cf.
Lemma 2.1 below). For higher dimensions, Theorem 1.3 shows that both kinds of
balls coincide if their center is at the origin. The question arises for which norms
also other balls are of both kinds. The following results are known [S1, Section 5]:
(i) For the Euclidean unit ball B® = {z: ||z||, < 1} of C™, every Carathéodory
ball with center z. # O is an ellipsoid and not an ordinary, Euclidean, ball.
(i1) For the polydisc P* = {z: ||z||,, < 1} of C", a Carathéodory ball with center
2. = (25,...,25) is a loo norm ball if and only if [2{| = --- = [2Z] (cf. Eq. (2.4)
below). Finally, (iii) for the set of all nxn complex matrices P, considered as lying
in C™, with spectral norm ||P|| < 1, a set, depending on n? + 2 real parameters,
of Carathéodory balls are also balls with respect to the spectral norm. Note that
in these three cases the unit balls B are homogeneous domains, i.e., the group of
automorphisms is transitive, and known. So by using an automorphism ¢ such
that ¢(0) = z., we obtain that ¢(Bc(0, a; B)) = Bc(zc,@; B). As Be(0, o5 B)
is, by (1.8), known, we have to examine when its image is a norm ball. In the
case which we are about to consider, i.e., for the two-dimensional unit ball of the

l, norm

(1.9) H={z2=(a1,2): llz]l, = |aa| + |22| < 1},

the group of automorphisms is highly intransitive. Indeed, it was already shown
in [K] (cf. also [T]) that every automorphism of H keeps the origin fixed. We have
thus to prove our result in a different way and in the next section we bring four

lemmas needed for the proof. We remark that in [HP2] this domain is denoted by

Dy;. Thullen [T] called it, for an obvious reason, Hyperkegel; hence our notation.
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2. Four lemmas

LEMMA 2.1: Let the Poincaré (non-Euclidean) circle Tp =T'(zp,a), T'p C A, be
defined by

z2—2z

(2.1) I(zp,a) = {z: I | = a}, zeEN O<a<l.

1-2z,

T, is also a Euclidean circle vg = v(zg, 1),

(2.2) ¥(zg,r) = {z: |2 — zg| <},
where
1-a?
(23) ZE = mew,
and
_ 1= |zp|2
(2.4) r=or— peTPR

For the proof assume first that z, = z, is positive and determine the real
points z; and z; on I'(zp,a), =1 < 21 < z, < z3 < 1. Then zg = (z; + 2)/2,
r = (xz — z1)/2, and the general result follows by rotation.

LEMMA 2.2: Letz € H,a € C*, and a% € H. Then
(2.5) Cu(%,ak) = p(||2|,, all2ll,)-
This is a special case of Theorem 1.2. For a direct proof set
g(u) = f((u/112ll,)2)-
For f € Hol(H, A), g € Hol(A, A), (1.2) and (1.3) imply
Cu(%, o) < p(||z]l;, all2]l,)-

The function fo(z) = 216~ + 20¢7%%, where & = (%1, %) = (|21|e*, |£1]e*%),

yields now the equality sign in (2.5).
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LEMMA 2.3: Let the points z = (z1,22) and Z = (w1, 2;) be in H. Then

2 wn

(2-6) Cu(z, i) = p(———— —-—)

11—z’ 1~|z|

This follows from a result of Gentili on “linear” complex geodesics [G; p.45];
for an elementary proof see [S2, Lemma 1]. We remark that both proofs yield a
similar result for Cyn(z,%), where H" is the unit ball of the /; norm in C™ and

z and Z are points in H™ differing only in one coordinate.

LEMMA 2.4: Let 41 and v, be two (Euclidean) circles in the complex plane C*:

@7 m= {z: z=z(p)=2zn+ rlei("’+0‘), r >0, —co<p< oo},
Y2 = {z: z=2z(p) =22+ r2e5(¢+0’), re >0, —0<p < oo}.

A necessary and sufficient condition for the existence of two points (1 and (3 in
C! and two real constants 6; and 6, such that the equality

(2.8) |z1() = C1] + |22(p) — (2] = comst,  —o0 < p < o0,
holds is
(2.9) G=2n, (=2

Proof: Sufficiency of (2.9) is obvious. To prove necessity, we remark that if
(1 = z and (2.8) holds, then clearly also {; = z;. We thus assume, by negation,

(2.10) G#zn, G#z,
and denote
(2.11) Ix — zgl =di, k=12

So (2.10) becomes
(2.10') dy >0, dy>0.

Let N be the point on v nearest to (i, and let Fi be the point on «; farthest
away from (i, k¥ = 1,2. If (2.8) holds, then we use the notation z,(p) ~ 22(¢),
—00 < ¢ < 00, for pairs of corresponding points. It follows that

(2.12) Ny~F, Ny~F.
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Indeed, near N;, the distance |2;(p) — (3| increases both for decreasing and
increasing values of ¢. For any point z3(p*) # F3, the distance |z2(¢) — (2]
increases, as ¢ moves near ¢* in, at least, one direction. So if N; would not
correspond to F, (2.8) could not be true. After an appropriate choice of §; and

82 we thus have
(213) MNMi==2a(n), FA=z(p+7), No=z(p+7), F2=2z(p)

(g is always taken mod 2r).

We have to distinguish between the cases (a) 0 < dx < r¢ and (b) rx < di
for each k, k = 1,2. Incase (a) [Ny — (| =& —dp, |[Fx — (k] =re +di. In
case (b) [Nx — (k| = dx — &, [F& — (k| = r& + di. We also consider the points
Qi, halfway between Fx and Ni: Qr = zi(p1 + 7/2), £ = 1,2. In both cases
1@k — G| = (&} +r§)'/.

There are now three possibilities:

() di € r1,dy <1y Then [Ny — G|+ |F2 — (2| = 1 —dy + 12 + d2, and
[Fi — G|+ N2 — G| = ri +di + 12— dy. So if (2.8) were true, we
would obtain d; = dz and |z1(¢) — C1| + |z2() — (2| = r1 + r2. However,
Q1 = Gl +1Q2 = Gl = (B + )2+ (B + )/ >+

(ll) d; < r, dz > r2. Now |N1 - <1| + |F2 - <2| =r - d] +r; + dz, and
|Fi — G|+ N2 = (2] = r1 +dy +dy —ra. (2.8) would give dy =
and |z1(¢) — 1] + |z2(¢) — (2| = r1 + d2, and this is again smaller than
(& + )72 + (f +r])V/2.

(iii) di > r1, dz > ra. Now we would obtain dy —ri +r2+de =di +r1+d2 —13.
Hence r; = ry, and again (d? + r3)1/2 + (&2 + r3)'/? > dy + dp. This
completes the proof. 1

We add a conjecture and a remark.

(i) The conjecture is that the lemma can be generalized to hold for any number
n, n 2> 2, of circles 4x and points (3.

(ii) It is easily seen that the analogue of this lemma does not hold for the I
norm; |z1(p) = (1% + |22() — (2|* = const, —o0 < ¢ < 00, holds, for appropriate
choice of 6; and 8;, whenever ryd; = rads.
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3. Carathéodory and norm balls of H
THEOREM 3.1: Let H C C? be the unit ball with respect to the l; norm:
(1.9) H = {z = (21,22): ||zl = |21| +|22] < 1}.

The only Carathéodory balls of H which are also norm balls are those with their

center at the origin.

Proof: Let B¢ = Be(ze,0;H), 2. € H, 0 < a < 1, be a Carathéodory ball of
H and assume that

(3.1) z. # 0.
We denote
(3:2) z. = (21, 23)

and assume first that

(8.1 25 #0, z5#0.

All points az., a € C?, satisfying

(3.3) Cu(z.,az.) = arc tanh a,
lie on dB¢. By Lemma 2.2 this yields

(3.4) p(lzcl;, alizel,) = arc tanh .

al|zc||,, with variable a and the given ||z.||;, lies thus on the non-Euclidean circle

Ty, = I'(||zc]l;;@). By Lemma 2.1 this is also a Euclidean circle vg = v(2g, ),

where
1-02
(3.5) 2g = 2|y ———3
- a2z}
and
2
(3.6) i = at Izl
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It follows that az§, k = 1,2, describes a Euclidean circle 73 = v(2k,rx), where

1—o?
3.7 h=f——m o  E=1,2
&0 F M ez ’
and

C
(3.8) re = ||z"| f, k=12

\zcll, ’
Note that r; 4+ r; = #, and note also that alz.|l, = 2 + fe’® implies az{ =
2k 4 rie’ (P00 where 2§ = |2§[e*, k= 1,2.
If dB¢(zc,o; H) is also the boundary 0By of a norm ball By(zn,r) of H,
then, in particular, the points az. = (az2§, az§) satisfying (3.3) have to lie on this

boundary dBn(zn,r). By Lemma 2.4 this can happen only if
(39) ZN = zZ= (21122))

where 3, and Z; are given by (3.7), and if r = #, given by (3.6).
We now show that not all points of dB¢(2., a; H) lie on 0Bn(Z,7). To do this,

we choose the points

(3.10) = (w1, %),

with variable w;, and z§ given by (3.2), for which
(3.11) Cu(z.,%) = arc tanh a.

Lemma 2.3 implies p(2{/(1 — |2§]), w1/(1 — |25])) = arc tanh a. wy /(1 — |25]) lies
thus on the non-Euclidean circle I'(z5/(1 — |2§|),a). This is a Euclidean circle
with center at {z{(1 —|25])(1 — a®)}/{(1 - |7§])? — a?|2{|*} and a given radius p.

Hence w; lies on a Euclidean circle yg = 4(zg,r) where

_ 71 - 14)* (1 - a?)

3.12 = ,
(3.12) = Je50)? = P fes?

and r = (1 — |2§|)p. If Z lies on OBN(%,F), then the I, distance ||z —1i||, =
|wy — 1| + |25 — 23| has to be constant (= #) for all w; on yg. This can only
happen if the center zg of yg equals Z;. To show that this is impossible, assume,
by negation, that

(3.13) ZE = 21.
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(3.7), (3.12), (3.13) and 2{ # 0, 0 < & < 1 yield |25| = |2§](|2] + |25]). As we
also assumed that z§ # 0, we obtain ||z.||, = 1 which contradicts the assumption
z. € H. This concludes the proof in case (3.1') holds.

Assume now that
(3.1") z; =0, z;+#0,
holds; so from now on z, is of the form
(3.2") zc = (0,23), 25 #0.

The points az. = (0, az§), which satisfy (3.3), lie on dB¢(z¢,a; H). So, if they
also lie on the boundary 0Bn of a norm ball, then, again, necessarily By =
Bn(Z',#'), where

(3.9") &' = (0,2),
1-a?
] sl _ ¢
(37 ) 22 = 2 1- 012|Z§|2 ’
and
1- |zc|2
] Al 2
(3.6") 7= T ot

Consider again the points Z = (w1, 25) which satisfy (3.11). wy/(1 — |2§]) lies on
the circle ', = I'(0, &) which is also the Euclidean circle yg = (0, a). w; lies
therefore on the Euclidean circle 4(0, (1 — [2§])a). We thus obtain '

12— &lly = lwil + 125 - 2]

(3.14)
= (1= |z5a + |25 {1 ~ (1 - a®)/(1 = |25 ")} = r*.

(3.6') and (3.14) yield
(315) (' —r*)(1 = @?|z5*)/(el25]) = (a — ®)|z5 ] + (o® ~ D)lz5] + (1 - a).

Let us denote the right hand side of (3.15) by fa(|25[), 0 < a < 1. fo(0)=1—a,
fa(1) =0, and f,(|25]) < 0 for 0 < |25] < 1. Hence fo(|2§]) >0 for0 < a < 1,
0 < |z5] < 1, and thus # > r*. The points Z do not lie on dBy(2',#'). This
completes the proof of the theorem. |



128 B. SCHWARZ Isr. J. Math.

We conclude with two remarks.
(i) Recently Hahn and Pflug [HP1] observed that the transformation

wy = 21 + 22,
(3.16) AT

wy = i(22 - zl),
maps H onto the unit ball B}, B C C?, given by the norm
L
V2
The transformation (3.16) is biholomorphic and isometric, so the conclusion of
Theorem 3.1 holds also for B3.

(ii) We do not know if Theorem 3.1 can be generalized to hold for the I; unit
ball of C*, n > 2. If, as conjectured, Lemma 2.4 can be generalized, then the

N*(w) = —=(jwa[* + fwal? + |w] + w3])'/?,  w = (w1,w2).

proof of the generalized theorem is virtually the same as the one brought here
for the I; unit ball H of C2.
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