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ABSTRACT 

Let H be the domain in C 2 defined by 

H = {~$ = (z 1 ,z2): [tzH1 = [Zl[ 4- Ix2[ <: 1} .  

Let CH(Z, w) be the Carath,:,odory distance of H, z, w E H. The  Carath4o- 

dory bail Bc(zc,a;H) with center z c ,  z c  E H, and radius a,  0 < a < 1, 

is defined by B c ( z c ,  a;  H) = {z: CH(Z, Zc)  < arc t a n h a } .  The norm ball 

BN(ZN,r) with center ZN, ZN G H, and radius r, 0 < r < 1 - HZNH1, is 

defined by BN(ZN, r)  = {Z: []z -- ZN[[1 < r}. 

THEOgEM: The only Carath~odory balls of H which are also norm balls 

are those with their center at the origin. 

1. In troduct ion  

We start this introduction with the definition of the Carathfiodory distance for 

bounded domains in C'* and define Carath~odory balls. For any given norm in 

C" we define the norm balls. We quote three theorems related to these notions. 

We close the introduction with three examples of unit bails for which it is known 

which Carath&~dory balls are also norm balls. In Section 2 we state four lemmas. 

The first three are not new, and the last lemma is purely geometric. We use these 

lemmas in the last section to prove the following result. Let H C C 2 be the unit 

ball with respect to the 11 norm. The only Carath~odory balls of H which are 

also norm balls are those with their center at the origin. 
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We denote the Poincar~ (non-Euclidean) distance of the unit disc 

z~ = {z: Izl < 1} 

of C 1 by p(z, w): 

z - w  
(1.1) p(z ,~)  = a r e t ~ [ [ l _ - = - ~ l l ,  Izl < 1, I~1 < 1. 

Let D be a bounded domain in the n-dimensional complex space C" and let 

Hol(D, A) be the set of all holomorphic functions f(z) = f ( z : , . . . ,  z , )  from D 

into A. The Cara th~odory  distance Cm(z, w) of D, z, w 6 D, is defined by 

(1.2) cD(~, w) = supp( / (z ) , / (w) ) ,  

where the supremum is taken over Hol(D, A). The Schwarz-Pick theorem implies 

that 

(1.3) cA(z, ~) = p(z, w). 

The Carath4odory distance is thus a generalization of the Poincar~ distance of 

the unit disc to general multidimensional domains. For a given bounded domain 

D, D C C", and any zc 6 D, and any a, 0 < a < 1, we set 

(1.4) B c  = Bc(zc ,  a; D) = {z: CD(Z, go) < a r c  tanha},  

and call B c  the  Cara th4odory  ball in D with  center  zc and  radius a. 

We shall use, implicitly, the following fact, cf. [D, p.88]. 

THEOREM 1.h  Let D be a convex bounded domain in C".  Then for any 

Carathdodory ball Bc = Bc(zc,a;D), zc 6 D, 0 < a < I, its dosure Bc C D. 

Next, we quote a special case of a result of Vesentini [V, Lemma 3.5; D, Propo- 

sition 6.20]. 

THEOREM 1.2: Let II " II be a given vector norm in C" and let B be the corre- 

sponding unit ball 

(1.5) .B = {z: Ilzll < 1}. 

Then, for any z 6 B and any a 6 C* such that az 6 B, 

(1.6) CB(z, as) = p(llzll, allzll). 
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Let H" ][ be a given norm in C n. For any zN 6 C" and any positive r we set 

(1.7) BN = BN('N,r) = {z: II" - zNll < r}, 

and call BN the norm ball with center ZN and radius r. By (1.5) B = 

BN(O, 1) where O is the origin of C ". 

THEOREM 1.3: Let II " II be a given norm in C n and tet B be the corresponding 

unit ball. Then, for any a, O < a < 1, 

(1.8) Bc(O, a; B) = BN(O, o O. 

This follows from (1.6) with a = 0, and (1.1). For a direct proof see [FV, 

Theorem IV.1.8]. 

In the one-dimensional case every norm disc is an ordinary (Euclidean) disc 

and in this case every non-Euclidean (Poincar4) disc of A is a Euclidean disc (cf. 

Lemma 2.1 below). For higher dimensions, Theorem 1.3 shows that both kinds of 

balls coincide if their center is at the origin. The question arises for which norms 

also other balls are of both kinds. The following results are known IS 1, Section 5]: 

(i) For the Euclidean unit ball B"  = {z: [[z[[ 2 < 1} of C",  every Carath4odory 

ball with center zc ~ O is an ellipsoid and not an ordinary, Euclidean, ball. 

(ii) For the polydisc P "  = {z: [[z[[oo < 1} of C",  a Cara th~dory  ball with center 

zc -- (zT, . . .  , z~)  is a t ~  norm ball if and only if Iz~l . . . . .  Iz~t (cf. Eq. (2.4) 

below). Finally, (iii) for the set of all n • n complex matrices P,  considered as lying 

in C "2, with spectral norm ][PI[ < 1, a set, depending on n 2 + 2 real parameters, 

of Carath4odory balls are also balls with respect to the spectral norm. Note that 

in these three cases the unit balls B are homogeneous domains, i.e., the group of 

automorphisms is transitive, and known. So by using an automorphism ~ such 

that ~0(O) = zc, we obtain that r a; B))  = Bc(zc ,  a; B).  As Bc(O ,  w; B)  

is, by (1.8), known, we have to examine when its image is a norm ball. In the 

case which we are about to consider, i.e., for the two-dimensional unit ball of the 

ll norm 

(1.9) g = {z = (zl,z2): [[z[[ 1 = [zl[ + [z2[ < I}, 

the group of automorphisms is highly intransitive. Indeed, it was already shown 

in [K] (cf. also [T]) that  every automorphism of H keeps the origin fixed. We have 

thus to prove our result in a different way and in the next section we bring four 

lemmas needed for the proof. We remark that in [HP2] this domain is denoted by 

D22. Thullen IT] called it, for an obvious reason, Hyperkegel; hence our notation. 
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2. Four lemmas 

LEMMA 2.1: Let the Poincard (non-Euclidean) circle F v = F(zv,~), rp C A, be 

defined by 

(2.1) F ( z p , a )  = II II = 

Fp is aJso a Euclidean circle 7E = 7(ZE, r), 

(2.2) 

where 

~(ZE,~) = {~: IZ--~EI < ~}, 

I - -  0/2 

(2.3) ZE = Zp" 1 _ a2[Zv[ 2 , 

and 

z p E A ,  O<a<1. 

1 - I z ,  I 2 
(2.4) r = a 

1 - a2lzp?" 

For the proof assume first that zp = zp is positive and determine the real 

points xl and z2 on r ( x p , a ) ,  - 1  < Zl < zp < x2 < 1. Then zs  = (x, + x2)/2, 

r = (z2 - z l ) /2 ,  and the general result follows by rotation. 

LEMMA 2.2: Let 9, 6 H ,  a E C 1, and a~, 6 H.  Then 

(2.5) cH(~ ,  a~) = p(ll~lh, all~.ih). 

This is a special case of Theorem 1.2. For a direct proof set 

g(u) = f((u/[[~][1)~, ). 

For f 6 Hol(H, A), g 6 Hol(A, A), (1.2) and (1.3) imply 

cH(~,, a~,) _< p(li~ll,,all~,lh). 

The function fo(Z) = z,e-~o, + z~e-~o~, where i = (~, ,~2) = (l~,le ~~ I~*le~~ 
yields now the equality sign in (2.5). 
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LEMMA 2.3: Let the points z = (zl,z2) and ~ = (Wl,Z2) be in H. Then 

( zl wl ) 
- - "  , _ ~  " (2.6) CH(z,~.) = p 1 -Iz21 1 [z2[ 

This follows from a result of Gentili on "linear" complex geodesics [G; p.45]; 

for an elementary proof see [S2, Lemma 1]. We remark that both proofs yield a 

similar result for CH,(Z,~), where H n is the unit ball of the 11 norm in C n and 

z and ~ are points in H n differing only in one coordinate. 

LEMMA 2.4: Let 71 and 72 be two (Euclidean) circles in the complex plane C1: 

~1 = {z: ~ =  z l ( ~ ) =  ~1 + r l ,  '(~+~ rl > 0, - o o  < ~ < co},  
(2 .7 )  

~ = {~: ~ = ~2 (~ )  = z~ + ~ , ~ ( ~ §  ~ > o, - ~  < ~ < eo} .  

A necessary and su~cient condition for the existence of two points ~1 and ~2 in 

C 1 and two rea/constants  01 and 02 such that the equality 

(2.8) I z l ( ~ )  - r + I z2(,p) - r = const, - o o  < ~o < eo, 

holds is 

(2.9) ~1 = z l ,  (2 = z2. 

Proof: Sufficiency of (2.9) is obvious. To prove necessity, we remark that if 

(1 = zl and (2.8) holds, then clearly also r = z2. We thus assume, by negation, 

(2.10) 

and denote 

~1 # zl ,  r # z2, 

(2.11) I~k - zk[ = dk, k = 1,2. 

So (2.10) becomes 

(2.10') dl > 0, d2 > 0. 

Let Nk be the point on 7~ nearest to ~k, and let Fk be the point on 7k farthest 

away from (k, k -- 1,2. If (2.8) holds, then we use the notation z1(90) ,,, z2(90), 

- o o  < ~ < co, for pairs of corresponding points. It follows that 

(2.12) NI ~, F2, N2 ~, F1. 
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Indeed, near N1, the distance Iz~(~) - ~ l  increases both for decreasing and 

increasing values of ~. For any point z~(~*) # F~, the distance [z2(~0) - 61 

increases, as ~0 moves near ~* in, at least, one direction. So if N~ would not 

correspond to F2, (2.8) could not be true. After an appropriate choice of ~ and 

82 we thus have 

(2.13) Ni = z~(~0~), F~ = zl(~l  + ~r), N2 = z2(~l + ~r), F2 = z2(~0t) 

(~ is always taken rood 2r). 

We have to distinguish between the cases (a) 0 < dk _< rk and (b) rk < dk 

for each k, k = 1,2. In case (a) INk - GI = rk - dk, IFk - GI = rk + dk. In 

case (b) INk - Ckl = dk - rk, [Fk - ~kl = rk + dk. We also consider the points 

Qk, halfway between Fk and Nk: Qk = zk(~01 + ~r/2), k = 1, 2. In both cases 

Iqk - GI = ( ~  + "~,)l/~- 
There are now three possibilities: 

(i) d~ _< r~, d2 _< r2. Then IN~ - (11 + IFs - GI = r ,  - dl + r2 + 6 ,  and 

I F ~ - ( ~ l + l N s - r  = r l + d l  + r s - d s .  So if (2.8) were true, we 

would obtain dl = ds and Iz1(9) - (~1 + Izs(~) - ~sl = rl + rs. However, 

IQ, - 61 + IQ2 - GI = ( ~  + r~) '/s + ( ~  + ,~)~/2 > r~ + r2. 
(ii) d, < r~, d2 > r2. Now IN1 - 61 + IFs - GI = r~ - d~ + r2 + d2, and 

IF, - ~11 + INs - 61 = , ,  + dl + d~ - r2. (2.8) would give d,  = r2 

and Izl(~) - ~11 + Iz2(~) - ~2l = rl + d2, and this is again smaller than 
(~ + r~),/~ + (~ +,.~)1/~. 

(iii) dl > r l ,  d2 > r2. Now we would obtain dl - r l  + r s  +d2 = dl + r l  +d2 - r s .  

Hence rl = r2, and again ( ~ + r ~ )  1 / 2 + ( ~ + r ~ )  1/2 > d, +d2 .  This 

completes the proof. I 

We add a conjecture and a remark. 

(i) The conjecture is that  the lemma can be generalized to hold for any number 

n, n > 2, of circles 7k and points ~k. 

(ii) It is easily seen that the analogue of this lemma does not hold for the /2  

norm; l Z l ( ~ ) -  6 P  + k ~ ( ~ ) -  6 P  = const, - ~  < ~ < ~ ,  holds, for appropriate 

choice of 01 and 02, whenever r~ dl = r2 d2. 
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3. Carath~odory and norm balls of H 

THEOREM 3.1: Let H C C 2 be the unit ball with respect to the 11 norm: 

(1 .9)  H = {-. = (z l , z~ ) :  I I"lh = I'~11 + Iz~l < 1}.  

The only Carath~odory balls of H which are also norm balls are those with their 

center at the origin. 

Proof: Let Bc = Bc(zc ,a;H),  zr E H,  0 < a < 1, be a Carath~odory ball of 

H and assume that 

(3.1) -.c # o .  

We denote 

(3.2) -.o = (z~, z D 

and assume first that 

(3.1') z [ # 0 ,  z ~ # 0 .  

All points azc, a E C 1, satisfying 

(3.3) CH(zc, aZc) = arc t anha ,  

lie on OBc. By Lemma 2.2 this yields 

(3.4) p(llz~ll~, allzoll,) = arc t anha .  

a[[z=l[1, with vaxiable a and the given I[Zc[[1, lies thus on the non-Euclidean circle 

r p  = r(llzclh,o0. 
where 

By Lemma 2.1 this is also a Euclidean circle "rE = 0"(ZE, r ) ,  

(3.5) z,~ = I lnll ,  

and 

(3.6) 

1 - -  O~ 2 

,~ = = I -I1%11~ 
1 - o,211nll ~" 
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It follows that az~, k = 1,2, describes a Euclidean circle 7k = 7(z~,r~), where 

(3.7) 

and 

(3.8) rk = [z~[ ~, k = 1, 2. 

Note  t h a t  r l  -[- r2 = r,  a n d  no te  also t h a t  aHzcH 1 -~ ;~E -[- re i~ implies az~ = 

~ + rke i(~+~ where z~ -- [z~]e i~ k = 1,2. 

If OBv(zc,a;H) is also the boundary OBN of a norm ball BN(ZN,r) of H,  

then, in particular, the points azc = (az~, az~) satisfying (3.3) have to lie on this 

boundary OBN(ZN, r). By Lemma 2.4 this can happen only if 

(3.9) Z N = Z - ' ~ ' ( Z l , Z 2 ) ,  

where ;~1 and s are given by (3.7), and if r = ~, given by (3.6). 

We now show that not all points of OBc(zc, a; H)  lie on OBN(~, ~). To do this, 

we choose the points 

(3.10) E = (w l, z~), 

with variable wl, and z~ given by (3.2), for which 

(3.11) CH(zc, ~) = arc tanha .  

Lemma 2.3 implies p(z~/(1 -Iz~]), wl/(1 -[z~D ) = arc t anha .  Wl/(1 -Iz~[) lies 

thus on the non-Euclidean circle r(z~/(1 -Iz~l),a). This is a Euclidean circle 

with center at {z~(1 -]z~[)(1 - a 2 ) } / { ( 1  -Iz~]) 2 -a2]z~] 2 } and a given radius p. 

Hence wl lies on a Euclidean circle 7E = "r(zg, r) where 

z~(1 - lz~l)2(1 - a 2) 
(3.12) zs = (1 - l z~ l )  2 - o~21z~l 2 '  

and r = (1 -Iz~])p.  If i lies on OBN(s then the 11 distance I l i - i [ l l  = 

IWl - Zl] + [z~ - z2] has to be constant (= ~) for all Wl on 7E. This can only 

happen if the center z/~ of "rE equals ~1. To show that this is impossible, assume, 

by negation, that 

(3 .13)  zE --- ~1. 
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(3.7), (3.12), (3.13) and z~ # 0, 0 < ot < 1 yield I=~1 = I=al(l=[I + I=al). As we 

also assumed that z~ # 0, we obtain Ilzoll, = i which contradicts the assumption 

Zc E H. This concludes the proof in case (3.1') holds. 

Assume now that 

(3.1") z~ = O, z~ # O, 

holds; so from now on Zc is of the form 

(3.2') ze = (O,z~), z~ # O. 

The points azc = (0, az~), which satisfy (3.3), lie on OBc(zc, a; H). So, if they 

also lie on the boundary i)BN of a norm ball, then, again, necessarily BN = 
BN(~.', ~'), where 

(3.9') ~.' = (0, z2), ^' 

(3.7') 

and 

(3.6') 

1 - -  4 2 
c 

z 2  1 _ ~= Iz~l 2' 

r  2 
-a21z~12" 

Consider again the points ~ = (Wl, z~) which satisfy (3.11). w,/(1 - I~1) lies on 

the circle Fp = F(0, 4) which is also the Euclidean circle 7E = 7(0, 4). Wl lies 

therefore on the Euclidean circle 7(0, (1 - Iz~l)4) .  We thus obtain 

(3 .14)  
II ~ - ~"111 = Iwll + I=~ - ~1  

= (1 - I~1 )~  + I=~1{1 - (1 - a 2 ) / ( 1  - 421=~12)} = r*. 

(3.6') and (3.14) yield 

(3 .15)  (~' - r*)(1 - 421z~12)/(41z~l)  = ( 4  - 42)1z~12 § (42 - 1)1~1 + (1 - 4) .  

Let us denote the right hand side of (3.15) by f~(Iz~l), 0 < 4 < 1. f~(0) = 1 - 4 ,  

f~,(1) = 0, and f ' ( l z~ l )  < o for 0 < Iz~l < 1. Hence f~(Iz~l) > 0 for 0 < 4 < 1, 

0 < Iz~l < 1, and thus f '  > r*. The points ~. do not lie on OBN(~', f'). This 

completes the proof of the theorem. | 
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We conclude with two remarks. 

(i) Recently Hahn and Pflug [HP1] observed that the transformation 

(3.16) wt = zl + z2, 

w2 = i ( z 2  - z l ) ,  

maps H onto the unit ball B~, B~ C C ~, given by the norm 

N*Cw) = ~ ( I w ,  I 2 + Iw2l ~ + Iw~ + w~l) ~/~, w = (w~,w~). 

The transformation (3.16) is biholomorphic and isometric, so the conclusion of 

Theorem 3.1 holds also for B~. 

(ii) We do not know if Theorem 3.1 can be generalized to hold for the 11 unit 

ball of C n, n > 2. If, as conjectured, Lemma 2.4 can be generalized, then the 

proof of the generalized theorem is virtually the same as the one brought here 

for the I1 unit ball H of C 2. 
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